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Abstract. The construction of a proof for unsatisfiability is less costly
than the construction of a ranking function. We present a new approach
to LTL software model checking (i.e., to statically analyze a program and
verify a temporal property from the full class of LTL including general
liveness properties) which aims at exploiting this fact. The idea is to
select finite prefixes of a path and check these for infeasibility before
considering the full infinite path. We have implemented a tool which
demonstrates the practical potential of the approach. In particular, the
tool can verify several benchmark programs for a liveness property just
with finite prefixes (and thus without the construction of a single ranking
function).

1 Introduction

The long line of research on software model checking, i.e., on tools that statically
analyze a given program in order to automatically verify a given temporal prop-
erty, was initially restricted to safety properties [2, 3, 11, 20, 37, 45, 51]. It was
later extended to termination [9, 21, 26, 27, 36, 40, 49, 50, 52]. The relative ma-
turity of this research is reflected by the fact that software model checking tools
successfully participate in the software verification competition SV-Comp [10],
for safety [29, 33, 41, 47] as well as for termination [33, 55, 56].

In a more recent trend, approaches to software model checking are emerg-
ing for the general class of LTL properties, and in particular general liveness
properties [5, 22, 23, 24]. In this paper, we introduce an approach to LTL soft-
ware model checking which is based on fairness modulo theory, an extension of
reachability modulo theory as introduced by Lal and Qadeer [42].

In the setting of [42], the existence of a program execution that violates a
given safety property is proven via the reachability of an error location of the
program along a feasible path. A path is feasible if the sequence of statements
along the path is executable. This condition is checked by checking whether the
corresponding logical formula is satisfiable modulo theory (i.e., satisfiable in the
logical theory of integers, arrays, etc.). Today, quite efficient SMT solvers exist



which can not only prove unsatisfiability but also compute interpolants [13, 14,
17, 19, 46]. Interpolants can be used to generalize the proof of unsatisfiability in
order to show the infeasibility of more and more paths and eventually prove the
unreachability of an error location (which is the underlying idea in the approach
to program verification of [35, 36]).

We extend the setting of [42] to LTL by defining the construction of a new
kind of program (a Büchi program) from the input program and the LTL prop-
erty. The control flow graph of a Büchi program comes with a distinguished set
of nodes which is used to define (infinite) fair paths (a path is fair if it visits the
distinguished set of nodes infinitely often). Now, in our extension of the setting
in [42], the existence of a program execution that violates a given LTL property
is proven via the existence of a feasible fair path.

In general, to show that the infinite sequence of statements along a path is
not executable, one needs to construct a ranking function. For example, for each
of the two infinite sequences of statements below, one may construct the ranking
function r defined by r(x, y) = x− y.

τ1 : x-- x>y x-- x>y x-- x>y . . .
τ2 : x:=y x>y x-- x>y x-- x>y . . .

Every finite prefix of τ1 is executable. In constrast, τ2 has the prefix x:=y x>y

which already is not executable.
In the case where an infinite sequence of statements has a finite prefix such

that already the prefix is not executable, it is not necessary to construct a
ranking function. Instead, it is sufficient to consider the prefix and prove the
unsatisfiability of the logical formula corresponding to the finite sequence of
statements in the prefix.

Tools exist that, given an infinite sequence of statements like ( x>y x-- )ω

or x:=y x>y ( x>y x-- )ω, can construct a ranking function like r above
automatically [7, 12, 48]. Recent efforts go into improving the scope and the
scalability of such tools [8, 25, 34, 43]. In comparison with proving unsatisfi-
ability, the task of constructing a ranking function will always be more costly.
Hence, substituting the construction of a ranking function by the construction of
a proof of unsatisfiability carries an interesting potential for optimization. The
goal of the work in this paper is to investigate whether this potential can be
exploited practically. We develop a practical method and tool for LTL software
model checking that shows that this is indeed the case.

In the remainder of the paper, after discussing an example, we introduce
Büchi programs (as described above, we reduce the validity of an LTL property
for a given program to the absence of a feasible fair path in a Büchi program). We
present an algorithm that constructs such a Büchi program and checks whether
it has a feasible fair path. The algorithm selects certain finite prefixes of a path
for the check of feasibility before the full infinite path is considered. We then
present the evaluation of a tool which implements the algorithm. Our evaluation
shows the practical potential of our approach. In particular, the tool can verify
several benchmark programs—for a liveness property—just with finite prefixes
(and thus without the construction of a single ranking function).



1 int x , y ;
2 while (1 ) {
3 x := ∗ ;
4 y := 1 ;
5 while (x>0){
6 x−−;
7 i f (x<=1)
8 y :=0;
9 }

10 }

(a)

l0

l1

l2

l3

x:=*;y:=1

x>0

x--

x<=1;y:=0 !(x<=1)

!(x>0)

(b)

q0

q1

true

!(y==0)&&(x>0)

!(y==0)

(c)

Fig. 1: Program P is shown in (a) as pseudocode and in (b) as control flow graph.
The Büchi automaton A¬ϕ that represents the negation of the LTL property
ϕ = �(x > 0→ ♦(y = 0)) is shown in (c).

2 Example

In this section we demonstrate how we apply our approach to the program P
depicted in Figure 1a and the LTL property ϕ = �(x > 0→ ♦(y = 0)).

We represent the program P by the graph depicted in Figure 1b. The edges
of this graph are labeled with program statements. We use the Büchi automaton
A¬ϕ depicted in Figure 1c as representation of the negation of the LTL property
ϕ.

As a first step we construct the Büchi program B depicted in Figure 2. Af-
terwards we will show that this Büchi program B has no path that is fair and
feasible, thus proving that P satisfies the LTL property ϕ.

A Büchi program is a program together with a fairness constraint: an execu-
tion is fair if a fair location is visited infinitely often. The fair locations of B are
highlighted by double circles. The locations of the Büchi program B are pairs
whose first element is a location of the program P and whose second element
is a state of the Büchi automaton A¬ϕ. The edges of the Büchi program B are
labeled with sequential compositions of two statements where the first element
is a statement of the program. The second element of the sequential composition
is an assume statement that represents a letter of the Büchi automaton A¬ϕ.

A key concept in our analysis is the notion of a trace. A trace is an infinite
sequence of statements. We call a trace fair if it is the labeling of a path that
visits some fair location infinitely often. A trace is feasible if it corresponds to
some program execution. An example for a fair trace is τ1τ

ω
2 where τ1 and τ2

are as follows.

τ1 : x:=*;y:=1 !(y==0)&&(x>0) !(x>0) !(y==0)

τ2 : x:=*;y:=1 !(y==0) !(x>0) !(y==0)

This trace is not feasible because the second statement !(y==0)&&(x>0) and
the third statement !(x>0) are contradicting each other.



l0q0

l1q0 l1q1

l2q0 l2q1

l0q1

l3q0 l3q1

x:=*;y:= 1

true

x:=*;y:= 1

!(y==0) && (x>0)

x > 0

true

x > 0

!(y==0) && (x>0)

!(x > 0)

true
!(x > 0)

!(y==0) && (x>0)

x > 0

!(y==0)

!(x > 0)

!(y==0)

x--

true

x--

!(y==0) && (x>0)

x--

!(y==0)

x:=*;y:= 1

!(y==0)

x<=1;y:=0

true

!(x<=1)

true

!(x<=1)

!(y==0) && (x>0)

x<=1;y:=0

!(y==0)

!(x<=1)

!(y==0)

Fig. 2: The Büchi program B constructed from the program P (Figure 1b) and
the Büchi automaton representing ¬ϕ (Figure 1c). Each edge is labeled with the
statements s1 s2 , where s1 comes from P and s2 comes from ¬ϕ. The
fair locations are l0q1,l1q1, l2q1 and l3q1, i.e., all locations that contain the Büchi
automaton’s accepting state q1.

Our algorithm constructs Büchi programs such that each fair and feasible
trace of the Büchi program corresponds to a feasible trace of the original program
that violates the LTL property.

In order to show that P satisfies ϕ we show that no fair trace of the Büchi
program B is feasible. Thus, our algorithm tries to find arguments for infeasibility
of fair traces in B:

Local infeasiblity. In the Büchi program B every trace that is the labeling of a
path that contains the edge

l3q1 x<=1; y:=0 !(y==0) l1q1

is infeasible, because the statements y:=0 and !(y==0) contradict each
other. Another example for local infeasibiliy is the edge from l1q0 to l0q1 which
is labeled with the two statements !(x>0) and (x>0) that contradict each
other, too.



Infeasiblity of a finite prefix. Every trace that is the labeling of a path that has
the following finite prefix

l0q0 x:=*;y:=1 true l1q1
l1q1 x>0 !(y==0)&&(x>0) l2q1
l2q1 x-- !(y==0) l3q1
l1q1 !(x<=1) !(y==0) l1q1
l1q1 !(x>0) !(y==0) l0q1

is infeasible because !(x<=1) contradicts !(x>0) . Another example for in-
feasibiliy of a finite prefix is the trace τ1τ

ω
2 that was discussed before.

ω-Infeasibility. Every trace that is the labeling of an infinite path that eventually
loops along the following edges

l1q1 x>0 !(y==0 l2q1
l2q1 x-- !(y==0) l3q1
l3q1 !(x<=1) !(y==0) l1q1

is infeasible because x-- infinitely often decreases x. Thus, the value of x

will eventually contradict !(x<=1) . The formal termination argument is the
ranking function f(x) = x.

Each fair trace of B is infeasible for one of the reasons mentioned above.
Hence, we can conclude that program P indeed satisfies the LTL property ϕ.

All reasons for infeasiblity that fall into the classes Local infeasiblity or In-
feasiblity of a finite prefix are comparatively cheap to detect. In this example
we only needed to synthesize one ranking function, which is in general more
expensive.

3 Preliminaries

Programs and Traces. In our formal exposition we consider a simple pro-
gramming language whose statements are assignment, assume, and sequential
composition. We use the syntax that is defined by the following grammar

s := assume bexpr | x:=expr | s;s

where Var is a finite set of program variables, x ∈ Var , expr is an expression
over Var and bexpr is a Boolean expression over Var . For brevity we use bexpr

to denote the assume statement assume bexpr.
We represent a program over a given set of statements Stmt as a labeled

graph P = (Loc, δ, l0) with a finite set of nodes Loc called locations, a set of
edges labeled with statements, i.e., δ ⊆ Loc × Stmt × Loc, and a distinguished
node l0 which we call the initial location.

In the following we consider only programs where each location has at least
one outgoing edge, i.e. ∀l ∈ Loc, ∃s ∈ Stmt , ∃l′ ∈ Loc • (l, s, l′) ∈ δ. We note



that each program can be transformed into this form by adding to each location
without outgoing edges a selfloop that is labeled with assume true.

We call an infinite sequence of statements τ = s0s1s2 . . . a trace of the pro-
gram P if τ is the edge labeling of an infinite path that starts at the initial
location l0. We define the set of all program traces formally as follows.

T (P) = {s0s1 . . . ∈ Stmtω | ∃l1, l2, . . . • (li, si, li+1) ∈ δ, for i = 0, 1, . . .}

Let D be the set of values of the program’s variables. We denote a program
state σ as a function σ : Var → D that maps program variables to values. We
use S to denote the set of all program states. Each statement s ∈ Stmt defines
a binary relation ρs over program states which we call the successor relation.
Let Expr be set of all expressions over the program variables Var . We assume a
given interpretation function I : Expr × (Var → D)→ D and define the relation
ρs ⊆ S × S inductively as follows.

ρs =


{(σ, σ′) | I(bexpr)(σ) = true and σ = σ′} if s ≡ assume bexpr

{(σ, σ′) | σ′ = σ[x 7→ I(expr)(σ)]} if s ≡ x:=expr

{(σ, σ′) | ∃σ′′ • (σ, σ′′) ∈ ρs1 and (σ′′, σ′) ∈ ρs2} if s ≡ s1;s2

Given a trace τ = s0s1s2 . . ., a sequence of program states π = σ0σ1σ2 . . .
is called a program execution of the trace τ if each successive pair of program
states is contained in the successor relation of the corresponding statement of
the trace, i.e., (σi, σi+1) ∈ ρsi for i ∈ {0, 1, . . .}. We call a trace τ infeasible if it
does not have any program execution, otherwise we call τ feasible. We use Π(τ)
to denote the set of all program executions of τ . The set of all feasible trace of
program P is denoted by Tfeas(P), and the set of all program executions of P is
defined as follows.

Π(P) =
⋃

τ∈Tfeas(P)

Π(τ)

Büchi automata and LTL properties. We will not formally introduce linear
temporal logic (LTL). Every LTL property can be expressed as a Büchi automa-
ton [1]. In our formal presentation we use Büchi automata to represent LTL
properties.

A Büchi automaton A = (Σ,Q, q0,−→, F ) is a five tuple consisting of a finite
alphabet Σ, a finite set of states Q, an initial state q0 ∈ Q, a transition relation
−→: Q×Σ ×Q, and a set of accepting states F ⊆ Q. A word over the alphabet
Σ is an infinite sequence w = a0a1a2 . . . such that ai ∈ Σ for all i ≥ 0. A run r
of a Büchi automaton A on w is an infinite sequence of states q0q1 . . ., starting in
the initial state such that for all ai ∈ w there is a transition (qi, ai, qi+1) ∈−→.
A run r is called accepting if r contains infinitely many accepting states. A word
w is accepted by A if there is an accepting run of A on w. The language L(A)
of a Büchi automaton A is the set of all words that are accepted by A.

An atomic proposition is a set of program states. An LTL property over a set
of atomic propositions AP defines a set of words over the alphabet Σ = 2AP .



LTL properties are usually denoted by formulas, but several translations from
formulas to equivalent Büchi automata are available [31, 32, 54]. We assume that
we have given a Büchi automaton Aϕ for each LTL property ϕ.

A program state σ satisfies a symbol a of the alphabet 2AP if σ is an element
of all atomic propositions in a. A sequence of program states σ0σ1 . . . satisfies
a word a0a1a2 . . . ∈ (2AP )ω, if σi+1 satisfies ai for each i ≥ 0. A sequence of
program states π satisfies the LTL property ϕ if π satisfies some word w ∈ Aϕ.
A trace τ = s0s1 . . . satisfies ϕ if it has at least one program execution and
all program executions of the trace satisfy ϕ. A program P satisfies ϕ if all
program executions of P satisfy ϕ. We will use the |= symbol to denote each of
these “satisfies relations”, e.g., we will write P |= ϕ if the program P satisfies
the LTL property ϕ.

We note that these definitions do not put any restrictions on the initial state
σ0 of a sequence of program states. This accounts for the fact that our pro-
grams do not have to start in a given initial program state and allows programs
that satisfy the LTL property �(x = 0). For example, the program whose first
statement sets the variable x to 0 and whose other statements do not modify x.

4 Büchi Program and Büchi Program Product

In this section we introduce the notion of a Büchi program, which is a program
which is extended by a fairness constraint. We show that the problem whether
a program satisfies an LTL property can be reduced to the problem whether a
Büchi program has a fair program execution.

Definition 1 (Büchi program). A Büchi program B = (Stmt , Loc, δ, l0, Locfair )
is a program P = (Loc, δ, l0) whose set of statements is Stmt, with a distinguished
subset of locations Locfair ⊆ Loc. We call the locations Locfair the fair locations
of B.

An example for a Büchi program is the program depicted in Figure 2 which was
discussed in Section 2.

Definition 2 (Fair trace). A trace s0s1s2 . . . of a Büchi program B is a fair
trace if

– there exists a sequence of locations l0, l1, . . . such that l0
s0−→ l1

s1−→ l2
s2−→ . . .

is a path in B, i.e., (li, si, li+1) ∈ δ for i = 0, 1, . . ., and
– the sequence l0, l1, . . . contains infinitely many fair locations.

We use Tfair (B) to denote the set of fair traces of B.

If we consider the Büchi program B = (Stmt , Loc, δ, l0, Locfair ) as a Büchi au-
tomaton where the alphabet is the set of program statements Stmt , the set of
states is the set of program locations Loc, the transition relation is the labeled
edge relation δ the initial state is the initial location l0 and the set of accept-
ing states is the set of fair locations Locfair , then the language of this Büchi
automaton is exactly the set of fair traces of the Büchi program.



Definition 3 (Fair program execution).
A program execution π of a Büchi program B is a fair program execution of B if
π is the program execution of some fair trace of B. We use Πfair(B) to denote
the set of all fair program execution of B.

We note that traces that are fair and feasible have at least one fair program
execution.

Boolean expressions over the set of program variables V ar, and atomic propo-
sitions both define sets of program states. For a letter a ∈ 2AP , we will use
assume a to denote the assume statement whose expression evaluates to true
for each state σ that satisfies a. Hence assume a has the following successor
relation.

{(σ, σ′) | σ |= p for each p ∈ a}

Definition 4 (Büchi program product). Let P = (Loc, l0, δP) be a program
over the set of statements Stmt, AP a set of atomic propositions over the pro-
gram’s variables V ar, and let A = (Σ,Q, q0,→, F ) be a Büchi automaton whose
alphabet is Σ = 2AP . The Büchi program product P ⊗ A is a Büchi program
B = (StmtB, LocB, l0B , δB, LocFB) such that the set of statements consists of all
sequential compositions of two statements where the first element is a statement
of P and the second element is a statement that assumes that a subset of atomic
propositions is satisfied, i.e.,

StmtB = {s; assume a | s ∈ Stmt , a ∈ 2AP },

the set of locations is the Cartesian product of program locations and Büchi
automaton states, i.e.,

LocB = {(l, q) | l ∈ Loc and q ∈ Q},

the initial location is the pair consisting of the program’s initial location and the
Büchi automaton’s initial state, i.e.,

l0B = (l0, q0),

the labeled edge relation is a product of the program’s edge relation and the tran-
sition relation of the Büchi automaton such that an edge is labeled by the state-
ment that is a sequential composition of the program’s edge label and an assume
statement obtained from the transition’s letter, formally defined as follows

δB = {((l, q), s; assume a, (l′, q′)) | (l, s, l′) ∈ δP and (q, a, q′) ∈→},

the set of fair locations contains all pairs where the second component is an
accepting state of the Büchi automaton, i.e.,

LocFB = {(l, q) | l ∈ Loc and q ∈ F}.

The following theorem shows how we can use the Büchi program product to
check if a program satisfies an LTL property.



Theorem 1. The program P satisfies the LTL property ϕ if and only if the
Büchi program product B = P ⊗ A¬ϕ does not have a trace that is fair and
feasible, i.e.,

P |= ϕ iff Tfair (B) ∩ Tfeas(B) = ∅

Proof. For brevity, we give only a sketch of the proof. A more detailed proof is
available in an extended version of this paper [30]. First, we use the definition of
the Büchi program product to show the following connection between traces of
B, traces of P and words over 2AP . s0; assume a0 s1; assume a1 . . . ∈ Tfair (B)
if and only if s0s1s2 . . . ∈ T (P) and a0a1a2 . . . ∈ L(A¬ϕ). Next, we use this
equivalence to show that for a sequence of program states the following holds.
π ∈ Πfair (B) if and only if π ∈ Π(P) and π |= A¬ϕ. A Büchi program has a fair
program execution if and only if it has a fair and feasible trace. We conclude
that the intersection Tfair (B) ∩ Tfeas(B) is empty if and only if each program
execution of P satisfies the LTL property ϕ. �

5 LTL Software Model Checking

In this section we describe our LTL software model checking algorithm. The
algorithm is based on counter example guided abstraction refinement (CEGAR)
in the fashion of [35] extended by a check for termination of fair traces and a
corresponding abstraction refinement.

Figure 3 shows an overview of the algorithm. The general idea is to create
and continuously enlarge a Büchi automaton AD whose language contains all
fair traces of B that are already known to be infeasible. The algorithm starts by
constructing a Büchi program B with the product construction from Section 4.
Initially, AD is a Büchi automaton that recognizes the empty language.

We use the similarities between Büchi programs and Büchi automata, i.e.,
that L(B) = Tfeas(B), throughout the whole algorithm. For example, in the first
step of our CEGAR loop we check whether the set of fair traces represented by
AD is a superset of the fair traces of B (the first box in Figure 3). This check
for trace inclusion can be done with only Büchi automata operations.

If the set of fair traces of AD is indeed a superset of the set of fair traces
of B, we know that there is no fair and feasible trace in B and our algorithm
returns safe.

As the trace inclusion check is performed by computing L(B) \ L(AD), we
will receive a fair trace τ of B that witnesses that the set of fair traces of AD
is no superset of the set of fair traces of B. In this case, τ is always of the form
τ1τ

ω
2 .
Next, our algorithm tries to decide whether τ is feasible or not. This is done

by first checking various finite prefixes for feasibility. More precisely, the stem
τ1, the loop τ2 and then the concatenation τ1τ2 are checked for feasibility in that
order. If none of those finite prefixes is infeasible, our algorithm tries to prove
that the full infinite trace terminates. The termination analysis (inner lower box)
tries to find a ranking function to prove that the loop will terminate eventually.



Input

program P
LTL property ϕ

L(B) ⊆ L(AD) ?

τ1τ2 feasible ?

τ terminating ?

P |= ϕ

P 6|= ϕ
τ is CEX

B := P ⊗A¬ϕ

AD := ∅

yes

no
τ = τ1τ

ω
2

τ1τ
ω
2 ∈ L(B) \ L(AD)

AD := AD ∪ refineF (τ)
no

yes
AD := AD ∪ refineω(τ)
yes

no

Fig. 3: The model checking algorithm. We use an automata-based approach that
collects generalizations of infeasible traces in a Büchi automaton AD. The three
inner boxes represent the three checks, which lead either to a refinement of AD,
a result, or to a timeout (not shown).

When non-termination can be proven, we conclude that τ is feasible. Therefore,
τ is a fair and feasible trace in B and thus a counterexample for the property
ϕ. If instead termination can be shown, we know that τ is infeasible and the
algorithm continues to the next step.

Note that the checks for feasibility of τ1 and τ2 as well as the termination
analysis are based on – in general – undecidable methods. It is possible that they
do not terminate. In such cases, our algorithm runs into a timeout and returns
unknown as answer.

In the last step of the CEGAR loop we want to refine AD by adding more
fair and infeasible traces. We do this by replacing AD with a Büchi automaton
that is the union of the old Büchi automaton AD and a new Büchi automaton
which we create from trace τ . This new Büchi automaton recognizes all fair
traces of B that are infeasible for the same reason for which trace τ is infeasible.
Depending on the reason for infeasiblity of trace τ , we use different methods for
the construction of this new Büchi automaton: if τ was infeasible because we
found an infeasible finite prefix, we use the method refineF , if τ was infeasible
because we found a ranking function, we use refineω.



The methods refineF and refineω generalize a single trace to a set of traces.
The input of these methods is the trace τ together with an infeasibility proof
(resp. termination proof). The output is a Büchi automaton that accepts a set of
traces whose infeasibility (resp. termination) can be shown by this infeasibility
proof (resp. termination proof). refineF and refineω guarantee that at least the
single trace is contained in the language, but usually recognize a much larger set
of traces. As the generalization performed by these methods is quite involved, it
is not in the scope of this paper. We refer the interested reader to [35, 36] for a
detailed description.

6 Implementation and Evaluation

We implemented the algorithm from Section 5 as Ultimate LTLAutomizer in
the program analysis framework Ultimate [16]. This allowed us to use different,
already available components for our implementation:

– a parser for ANSI C extended with specifications written in ACSL [6],
– various source-to-source transformations that optimize and simplify the in-

put program,
– an implementation of the Trace Abstraction algorithm [35] to determine

feasibility of finite trace prefixes,
– an implementation of a ranking function synthesis algorithm based on [34]

to prove termination of fair traces in the Büchi program, and
– various automata operations like union, complementation and intersection

of Büchi automata.

For the LTL property we use a custom annotation compatible to the ACSL
format. After parsing, we transform the LTL property with LTL2BA [32] to a
Büchi automaton, which is then together with an initial program the input for
the product algorithm.

Our implementation of the product construction already contains some opti-
mizations. For one, we already described that we remove locally infeasible traces
by removing infeasible edges during the construction. We also convert the ex-
pression e of assume e statements to disjunctive normal form. If this results in
edges labeled with more than one disjuncts, i.e. with assume e1||e2||...||en,
we convert them to n edges labeled with assume ei. This improves the perfor-
mance of the ranking function synthesis algorithm considerably.

Table 1 shows a comparison of our implementation against the benchmarks
and the data provided by [23], in which the authors compare their novel LTL-
checking approach based on decision predicates (DP) against a Terminator-like
procedure with an extension for fairness [21] (Term.). The set of benchmarks
contains examples from “[. . . ] the I/O subsystem of the windows kernel, the
back-end infrastructure of the PostgreSQL database server, and the Apache web
server”, as well as “some toy examples”. As the tools that were used in [23]
are not publicly available, we could not re-run their implementations on our



Term. [21] DP [23] Ultimate LTLAutomizer

Program Lines ϕ
Time

(s)
Re-
sult

Time
(s)

Re-
sult

Time
(s)

Re-
sult

|rF | |rω|
Inc.
(%)

Ex. Sec. 2 of [23] 5 ♦�p 2.32 4 1.98 4 0.51 4 1 0 122
Ex. Fig. 8 of [21] 34 �(p⇒ ♦q) 209.64 4 27.94 4 0.72 4 2 0 186
Toy acquire/release 14 �(p⇒ ♦q) 103.48 4 14.18 4 0.44 4 1 1 129
Toy linear arith. 1 13 p⇒ ♦q 126.86 (4) 34.51 (4) 1.10 7 5 1 0.28
Toy linear arith. 2 13 p⇒ ♦q T.O. T.O. 6.74 4 0.82 4 4 2 0.24
PostgreSQL strmsrv 259 �(p⇒ ♦�q) T.O. T.O. 9.56 4 1.04 4 2 0 216
PostgreSQL
strmsrv + bug

259 �(p⇒ ♦�q) 87.31 (7) 47.16 (7) 0.66 4 2 0 216

PostgreSQL pgarch 61 ♦�p 31.50 (4) 15.20 (4) 0.33 7 2 0 209
PostgreSQL dropbuf 152 �p T.O. T.O. 1.14 (4) 3.57 7 1 1 148
PostgreSQL dropbuf 152 �(p⇒ ♦q) 53.99 4 27.54 4 1.37 4 2 1 168
Apache accept() 314 �p⇒ �♦q T.O. T.O. 197.41 4 502.15 OOM - - 209
Apache progress 314 �(p⇒

(♦q1 ∨ ♦q2))
685.34 4 684.24 4 2.01 4 4 0 209

Windows OS 1 180 �(p⇒ ♦q) 901.81 4 539.00 4 43.59 4 1 1 178
Windows OS 2 158 ♦�p 16.47 4 52.10 4 0.11 4 1 0 176
Windows
OS 2 + bug

158 ♦�p 26.15 7 30.37 7 0.22 7 1 0 174

Windows OS 3 14 ♦�p 4.21 4 15.75 4 0.08 4 2 0 220
Windows OS 4 327 �(p⇒ ♦q) T.O. T.O. 1,114.18 4 1.86 4 1 3 207
Windows OS 4 327 (♦p) ∨ (♦q) 1,223.96 4 100.68 4 - N.R. - - -
Windows OS 5 648 �(p⇒ ♦q) T.O. T.O. T.O. T.O. 20.76 4 1 16 190
Windows OS 6 13 ♦�p 149.41 4 59.56 4 T.O. T.O. 6 8 158
Windows
OS 6 + bug

13 ♦�p 6.06 7 22.12 7 0.05 7 0 0 61

Windows OS 7 13 �♦p T.O. T.O. 55.77 4 0.91 4 2 11 161
Windows OS 8 181 ♦�p T.O. T.O. 5.24 4 53.55 4 4 55 168

Table 1: The results of the comparison with the benchmarks from [23]. “Pro-
gram”, “Lines”, and “ϕ” contain the name of the benchmark, the lines of code
of the program, and the checked property (atomic propositions have been ab-
breviated). “Result” states whether the tool proved the property (4), produced
a valid counterexample (7), ran out of time (T.O.) or out of memory (OOM).
N.R. shows the instance where we could not use the benchmark because the
property was not specified explicitly and could not be guessed from the com-
ments in the file. “Time” contains the runtime of the respective tool in seconds.
For Ultimate LTLAutomizer, there are additional statistics columns: “|rF |”
states how many traces were refined using refineF , and analogous “|rω|” for
refineω. “Inc.” shows how much the product increased in size compared to the
original CFG of the program. The timeout for “Term.” and “DP” was four hours,
our timeout was 20 minutes. Our memory limit was 8GB.

machine. Therefore, the results in the columns “Term.” and “DP” are verbatim
from the original publication.

We could solve most of the benchmarks in under five seconds. Notable ex-
ceptions are “Windows OS 5”, where the other tools run into a timeout, and
“Windows OS 8” where we performed much slower than DP. We are still unclear
about the OOM result in “Apache accept()”, but we suspect a bug in our tool.



In many instances with liveness properties we did not need to provide a rank-
ing function, because the generalization from traces that are infeasible because
of infeasible finite prefixes already excluded all fair traces of the Büchi pro-
gram. For the remainder, the termination arguments were no challenge, except
for “Windows OS 8”: we had difficulties to generalize from many terminating
traces, which also resulted in the slowdown compared to DP.

The expected increase in size of the Büchi program compared to the initial
program’s CFG (Inc.) was also manageable. Interestingly, in both instances of
“Toy linear arith.” the product was even smaller than the original CFG, because
we could remove many infeasible edges.

On four benchmarks Ultimate LTLAutomizer results are different from
the data in [23]: we contacted the authors and confirmed that our result for
“Toy linear arith. 1” is indeed correct. We also could not run the benchmark
“Windows OS 4”, because the LTL property contained variables that were not
defined in the source file. We did not yet receive a response regarding this issue
as well as regarding the correctness of our results in the other three instances.

Statistics for 4 and 7

Program set
Avg.
Lines

|Set| 4 7 T.O. OOM
H

(N.R.)

Avg.
Time

(s)

Avg.
|rF |

Avg.
|rω|

Inc.
(%)

RERS P14 514 50 19 21 2 0 8 107.21 21 < 1 329
RERS P15 1353 50 24 0 11 12 3 103.46 17 < 1 369
RERS P16 1304 50 15 1 16 14 4 297.34 32 < 1 362
RERS P17 2100 50 26 0 9 9 6 56.38 12 < 1 324
RERS P18 3306 50 21 0 17 10 2 262.03 24 < 1 297
RERS P19 8079 50 0 0 28 17 5 - - - -
coolant 65 18 6 10 2 0 0 1.75 2 1 258
Benchmarks
from Tab. 1

157 23 15 5 1 1 0 (1) 16.78 2 5 184

Table 2: Results of Ultimate LTLAutomizer on other benchmark sets.
“RERS” are the online problems from “The RERS Grey-Box Challenge
2012” [39] and “coolant” consists of toy examples modelled after real-world em-
bedded systems with specifications based on the LTL patterns described in [53].
Each program set contains pairs of a file and a property. “Avg. Lines” states
the average lines of code in the sample set, and |Set| the number of file-property
pairs. In the next five columns we use the same symbols as in Table 1 except
for H, which represents abnormal termination of Ultimate LTLAutomizer.
The last four columns show the average runtime, the average number of refine-
ments with refineF and refineω, and how much the size of the optimized product
increased on average compared to the original CFG. We used the same timeout
and memory limits as in Table 1.



We also considered two other benchmark sets (see Table 2). First, we ran the
on-site problems from the RERS Grey-Box Challenge 2012 [39] (RERS). RERS
is about comparing program verification techniques on a domain of problems
comparable to the ones seen in embedded systems engineering. For this, they
generate control-flow-intensive programs that contain a so-called ECA-engine
(event-condition-action): one non-terminating while loop which first reads an
input symbol, then calls a function that based on the current state and the
input calculates an output symbol, and finally writes this output symbol. We
took all 6 problem classes from the on-site part of the challenge and tried to
solve them with our tool. The classification (P14 to P19) encodes the size and
assumed difficulty of the problem class: P14 and P15 are small, P16 and P17 are
medium, and P18 and P19 are large problems. Inside a size bracket, the larger
number means a higher difficulty.

We were able to verify roughly 43% of the RERS benchmarks without any
modifications. The RERS set also helped us finding a bug that one of our opti-
mizations on the Büchi program product introduced and which is responsible for
all but four of the H results. For the remaining four examples, H occurred be-
cause Ultimate LTLAutomizer was unable to synthesize a ranking function.
Interestingly, the RERS benchmarks did seldomly require generalizations with
refineω. In most cases, the refineF already excluded all fair traces from the Büchi
program. This trend can also be observed in the number of refineω applications
on the benchmarks that timed out (not shown in Table 2).

Second, we used a small toy example modeled after an embedded system,
a coolant facility controller that encompasses two potentially non-terminating
loops in succession. The first polls the user for the input of a sane temperature
limit (except one example all versions of the coolant controller can loop infinitely
in this step if the input is not suitable). The second loop polls the temperature,
does some calculations, increments a counter and sets the “spoiled goods” flag if
the temperature limit is exceeded. The LTL properties specify that the spoiled
variable cannot be reset by the program (safety), that setup stages occur in
the correct order (safety and liveness), and that the temperature controlling
loop always progresses (safety and liveness). We then introduced various bugs
in the original version of the program and checked against the property and its
negation. Although the coolant examples are quite small, they contain complex
inter-dependencies between traces which lead to timeouts in two cases.

An unexpected result of the evaluation was, that the initial size of the pro-
gram does not seem to define the performance of the verification, both in time
and success rate, as the larger programs from P17 and P18 had more results
and were faster than their counterparts from P15 and P16. Also, the effective
blow-up due to the product construction is no more than four times, which is
still quite manageable.

The benchmark sets together with Ultimate LTLAutomizer are available
from [30].



7 Related Work

An earlier approach to LTL software model checking was done in [21]. There, the
authors reduced the problem to fair termination checking. Our work can be seen
as improvement upon this approach, as we also use fair termination checking, but
only when it is necessary. We avoid a large number of (more costly) termination
checks due to our previous check for infeasible finite prefixes and the resulting
generalizing refinement.

In [23], the authors reduce the LTL model checking problem to the problem
of checking ∀CTL by first approximating the LTL formula with a suitable CTL
formula, and then refining counterexamples that represent multiple paths by in-
troducing non-deterministic prophecy variables in their program representation.
This non-determinism is then removed through a determinization procedure. By
using this technique, they try to reduce their dependence on termination proofs,
which they identified as the main reason for poor performance of automata-
theoretic approaches. Our approach can be seen as another strategy to reduce
the reliance on many termination proofs. By iteratively refining the Büchi pro-
gram with different proof techniques, we often remove complex control structures
from loops and thus reduce the strain on the termination proof engine.

There exist various publicly available finite-state model checking tools that
support both LTL properties and programs, but are in contrast to Ultimate
LTLAutomizer limited to finite-state systems: SPIN [38] and Divine [4] are
both based on the Vardi-Wolper product [57] for LTL model checking. Divine
supports C/C++ via LLVM bytecode, SPIN can be used with different front-
ends that translate programs to finite-state models, e.g. with Bandera [28] for
Java. NuSMV [18] and Cadence SMV [44] reduce LTL model checking to CTL
model checking. NuSMV can use different techniques like BDD symbolic model
checking using symbolic fixed point, computation with BDDs, or bounded model
checking using MiniSat. Cadence SMV uses Mu-calculus with additional fairness
constraints [15].

8 Conclusion and Future Work

The encoding of the LTL program verification problem through the infeasibility
of fair paths in a Büchi program has allowed us to define a sequence of semi-
tests which can be scheduled before the full test of infeasibility of an infinite
path. The occurrence of a successful semi-test (the proof of infeasibility for a
finite prefix, by the construction of a proof of unsatisfiability) makes the full test
redundant and avoids the relatively costly construction of a ranking function.
Our experiments indicate that the corresponding approach leads to a practical
tool for LTL software model checking.

We see several ways to improve performance. We may try to use alternatives
to LTL2BA such as SPOT [31]; see [54]. The technique of large block encod-
ing [11] adapted to Büchi programs, may help to reduce memory consumption.
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